A posteriori error analysis for a class of integral equations and variational inequalities
نویسندگان
چکیده
We consider elliptic and parabolic variational equations and inequalities governed by integro-differential operators of order 2s ∈ (0, 2]. Our main motivation is the pricing of European or American options under Lévy processes, in particular pure jump processes or jump diffusion processes with tempered stable processes. The problem is discretized using piecewise linear finite elements in space and the implicit Euler method in time. We construct a residual-type a posteriori error estimator which gives a computable upper bound for the actual error in H-norm. The estimator is localized in the sense that the residuals are restricted to the discrete non-contact region. Numerical experiments illustrate the accuracy of the space and time estimators, and show that they can be used to measure local errors and drive adaptive algorithms.
منابع مشابه
ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
متن کاملLocal A Posteriori Error Estimators for Variational Inequalities
CCC 0749-159X/93/010023-11 Numerical Methods for Partial Differential Equations, 9, 23-33 (1993) \!:) 1993 John Wiley & Sons, Inc. Local a posteriori error estimators for finite element approximation o( variational inequalities are derived. These are shown to provide upper bounds on the discretization error. Numerical examples are given illustrating the theoretical results. © 1993 John Wiley an...
متن کاملAnother view for a posteriori error estimates for variational inequalities of the second kind
In this paper, we give another view to understand a posteriori error analysis for finite element solutions of elliptic variational inequalities of the second kind. This point of view makes it simpler to derive reliable error estimators in solving variational inequalities of the second kind from the theory for related linear variational equations. Reliable residual-based and gradient recovery-ba...
متن کاملA new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 116 شماره
صفحات -
تاریخ انتشار 2010